Proofs of Mizuno's Conjectures on Generalized Rank Three Nahm Sums

发布者:文明办发布时间:2025-06-06浏览次数:10

主讲人:王博学 武汉大学


时间:2025年6月7日13:00


地点:徐汇校区三号楼332室 


举办单位:数理学院


主讲人介绍:王博学,武汉大学博士生,师从王六权教授,并入选武汉大学数学学院拔尖人才培养计划。其主要研究领域为q-级数与模形式,特别在Rogers-Ramanujan型恒等式的研究中取得一定进展,其研究成果已发表于《Advances in Mathematics》,《Transactions of the American Mathematical Society》等期刊。


内容介绍:Mizuno providied 15 examples of generalized rank three Nahm sums with symmetrizer diag(1,2,2) which are conjecturally modular. Using the theory of Bailey pairs and some q-series techniques, we establish a number of triple sum Rogers--Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except for two non-modular cases. We show that the two exceptional cases of Nahm sums are sums of modular forms of weights 0 and 1. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers diag(1,1,2) and diag(1,2,2).

热点新闻
最新要闻