主讲人:王晓东,上海交通大学研究员
时间:2019年4月15日10:30
地点:徐汇校区三号楼332
举办单位:数理学院
内容介绍:In this talk, we recall some classical results on (bi-)Lyapunov stable chain recurrence classes. We prove that for generic $f\in \diff^1(M)$, a homoclinic class $H(p)$ is bi-Lyapunov stable if and only if it contains non-empty interior. We also obtain some properties of the boundary of a bi-Lyapunov stable homoclinic class $H(p)$ if it does not coincides with the whole manifold $M$. This is a joint work with S. Crovisier.